3.34 \(\int \frac {1}{(e \cot (c+d x))^{5/2} (a+a \cot (c+d x))^2} \, dx\)

Optimal. Leaf size=331 \[ -\frac {\log \left (\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}+\sqrt {e}\right )}{4 \sqrt {2} a^2 d e^{5/2}}+\frac {\log \left (\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}+\sqrt {e}\right )}{4 \sqrt {2} a^2 d e^{5/2}}-\frac {7 \tan ^{-1}\left (\frac {\sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{2 a^2 d e^{5/2}}+\frac {\tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{2 \sqrt {2} a^2 d e^{5/2}}-\frac {\tan ^{-1}\left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{2 \sqrt {2} a^2 d e^{5/2}}-\frac {9}{2 a^2 d e^2 \sqrt {e \cot (c+d x)}}-\frac {1}{2 d e \left (a^2 \cot (c+d x)+a^2\right ) (e \cot (c+d x))^{3/2}}+\frac {7}{6 a^2 d e (e \cot (c+d x))^{3/2}} \]

[Out]

-7/2*arctan((e*cot(d*x+c))^(1/2)/e^(1/2))/a^2/d/e^(5/2)+7/6/a^2/d/e/(e*cot(d*x+c))^(3/2)-1/2/d/e/(e*cot(d*x+c)
)^(3/2)/(a^2+a^2*cot(d*x+c))+1/4*arctan(1-2^(1/2)*(e*cot(d*x+c))^(1/2)/e^(1/2))/a^2/d/e^(5/2)*2^(1/2)-1/4*arct
an(1+2^(1/2)*(e*cot(d*x+c))^(1/2)/e^(1/2))/a^2/d/e^(5/2)*2^(1/2)-1/8*ln(e^(1/2)+cot(d*x+c)*e^(1/2)-2^(1/2)*(e*
cot(d*x+c))^(1/2))/a^2/d/e^(5/2)*2^(1/2)+1/8*ln(e^(1/2)+cot(d*x+c)*e^(1/2)+2^(1/2)*(e*cot(d*x+c))^(1/2))/a^2/d
/e^(5/2)*2^(1/2)-9/2/a^2/d/e^2/(e*cot(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 1.08, antiderivative size = 331, normalized size of antiderivative = 1.00, number of steps used = 20, number of rules used = 16, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.640, Rules used = {3569, 3649, 3653, 12, 16, 3476, 329, 297, 1162, 617, 204, 1165, 628, 3634, 63, 205} \[ -\frac {9}{2 a^2 d e^2 \sqrt {e \cot (c+d x)}}-\frac {\log \left (\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}+\sqrt {e}\right )}{4 \sqrt {2} a^2 d e^{5/2}}+\frac {\log \left (\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}+\sqrt {e}\right )}{4 \sqrt {2} a^2 d e^{5/2}}-\frac {7 \tan ^{-1}\left (\frac {\sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{2 a^2 d e^{5/2}}+\frac {\tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{2 \sqrt {2} a^2 d e^{5/2}}-\frac {\tan ^{-1}\left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{2 \sqrt {2} a^2 d e^{5/2}}-\frac {1}{2 d e \left (a^2 \cot (c+d x)+a^2\right ) (e \cot (c+d x))^{3/2}}+\frac {7}{6 a^2 d e (e \cot (c+d x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/((e*Cot[c + d*x])^(5/2)*(a + a*Cot[c + d*x])^2),x]

[Out]

(-7*ArcTan[Sqrt[e*Cot[c + d*x]]/Sqrt[e]])/(2*a^2*d*e^(5/2)) + ArcTan[1 - (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e
]]/(2*Sqrt[2]*a^2*d*e^(5/2)) - ArcTan[1 + (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]]/(2*Sqrt[2]*a^2*d*e^(5/2)) +
7/(6*a^2*d*e*(e*Cot[c + d*x])^(3/2)) - 9/(2*a^2*d*e^2*Sqrt[e*Cot[c + d*x]]) - 1/(2*d*e*(e*Cot[c + d*x])^(3/2)*
(a^2 + a^2*Cot[c + d*x])) - Log[Sqrt[e] + Sqrt[e]*Cot[c + d*x] - Sqrt[2]*Sqrt[e*Cot[c + d*x]]]/(4*Sqrt[2]*a^2*
d*e^(5/2)) + Log[Sqrt[e] + Sqrt[e]*Cot[c + d*x] + Sqrt[2]*Sqrt[e*Cot[c + d*x]]]/(4*Sqrt[2]*a^2*d*e^(5/2))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 297

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 3476

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[x^n/(b^2 + x^2), x], x, b*Tan[c + d
*x]], x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rule 3569

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(b^2*(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n + 1))/(f*(m + 1)*(a^2 + b^2)*(b*c - a*d)), x] + D
ist[1/((m + 1)*(a^2 + b^2)*(b*c - a*d)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[a*(b*c -
 a*d)*(m + 1) - b^2*d*(m + n + 2) - b*(b*c - a*d)*(m + 1)*Tan[e + f*x] - b^2*d*(m + n + 2)*Tan[e + f*x]^2, x],
 x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && I
ntegerQ[2*m] && LtQ[m, -1] && (LtQ[n, 0] || IntegerQ[m]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] &&
NeQ[a, 0])))

Rule 3634

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rule 3649

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*t
an[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[((A*b^2 - a*(b*B - a*C))*(a + b*T
an[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2)), x] + Dist[1/((m + 1)*(
b*c - a*d)*(a^2 + b^2)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1)
 - b^2*d*(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d)*(A*b - a*B - b*C)*Tan[e
+ f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C,
 n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] &&  !(ILtQ[n, -1] && ( !I
ntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rule 3653

Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(a^2 + b^2), Int[(c + d*Tan[e + f*
x])^n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Dist[(A*b^2 - a*b*B + a^2*C)/(a^2 +
b^2), Int[((c + d*Tan[e + f*x])^n*(1 + Tan[e + f*x]^2))/(a + b*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e,
f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !GtQ[n, 0] &&  !LeQ[n, -
1]

Rubi steps

\begin {align*} \int \frac {1}{(e \cot (c+d x))^{5/2} (a+a \cot (c+d x))^2} \, dx &=-\frac {1}{2 d e (e \cot (c+d x))^{3/2} \left (a^2+a^2 \cot (c+d x)\right )}-\frac {\int \frac {-\frac {7 a^2 e}{2}+a^2 e \cot (c+d x)-\frac {5}{2} a^2 e \cot ^2(c+d x)}{(e \cot (c+d x))^{5/2} (a+a \cot (c+d x))} \, dx}{2 a^3 e}\\ &=\frac {7}{6 a^2 d e (e \cot (c+d x))^{3/2}}-\frac {1}{2 d e (e \cot (c+d x))^{3/2} \left (a^2+a^2 \cot (c+d x)\right )}-\frac {\int \frac {\frac {27 a^3 e^3}{4}+\frac {3}{2} a^3 e^3 \cot (c+d x)+\frac {21}{4} a^3 e^3 \cot ^2(c+d x)}{(e \cot (c+d x))^{3/2} (a+a \cot (c+d x))} \, dx}{3 a^4 e^4}\\ &=\frac {7}{6 a^2 d e (e \cot (c+d x))^{3/2}}-\frac {9}{2 a^2 d e^2 \sqrt {e \cot (c+d x)}}-\frac {1}{2 d e (e \cot (c+d x))^{3/2} \left (a^2+a^2 \cot (c+d x)\right )}-\frac {2 \int \frac {-\frac {21}{8} a^4 e^5-\frac {3}{4} a^4 e^5 \cot (c+d x)-\frac {27}{8} a^4 e^5 \cot ^2(c+d x)}{\sqrt {e \cot (c+d x)} (a+a \cot (c+d x))} \, dx}{3 a^5 e^7}\\ &=\frac {7}{6 a^2 d e (e \cot (c+d x))^{3/2}}-\frac {9}{2 a^2 d e^2 \sqrt {e \cot (c+d x)}}-\frac {1}{2 d e (e \cot (c+d x))^{3/2} \left (a^2+a^2 \cot (c+d x)\right )}-\frac {\int -\frac {3 a^5 e^5 \cot (c+d x)}{2 \sqrt {e \cot (c+d x)}} \, dx}{3 a^7 e^7}+\frac {7 \int \frac {1+\cot ^2(c+d x)}{\sqrt {e \cot (c+d x)} (a+a \cot (c+d x))} \, dx}{4 a e^2}\\ &=\frac {7}{6 a^2 d e (e \cot (c+d x))^{3/2}}-\frac {9}{2 a^2 d e^2 \sqrt {e \cot (c+d x)}}-\frac {1}{2 d e (e \cot (c+d x))^{3/2} \left (a^2+a^2 \cot (c+d x)\right )}+\frac {\int \frac {\cot (c+d x)}{\sqrt {e \cot (c+d x)}} \, dx}{2 a^2 e^2}+\frac {7 \operatorname {Subst}\left (\int \frac {1}{\sqrt {-e x} (a-a x)} \, dx,x,-\cot (c+d x)\right )}{4 a d e^2}\\ &=\frac {7}{6 a^2 d e (e \cot (c+d x))^{3/2}}-\frac {9}{2 a^2 d e^2 \sqrt {e \cot (c+d x)}}-\frac {1}{2 d e (e \cot (c+d x))^{3/2} \left (a^2+a^2 \cot (c+d x)\right )}+\frac {\int \sqrt {e \cot (c+d x)} \, dx}{2 a^2 e^3}-\frac {7 \operatorname {Subst}\left (\int \frac {1}{a+\frac {a x^2}{e}} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 a d e^3}\\ &=-\frac {7 \tan ^{-1}\left (\frac {\sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{2 a^2 d e^{5/2}}+\frac {7}{6 a^2 d e (e \cot (c+d x))^{3/2}}-\frac {9}{2 a^2 d e^2 \sqrt {e \cot (c+d x)}}-\frac {1}{2 d e (e \cot (c+d x))^{3/2} \left (a^2+a^2 \cot (c+d x)\right )}-\frac {\operatorname {Subst}\left (\int \frac {\sqrt {x}}{e^2+x^2} \, dx,x,e \cot (c+d x)\right )}{2 a^2 d e^2}\\ &=-\frac {7 \tan ^{-1}\left (\frac {\sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{2 a^2 d e^{5/2}}+\frac {7}{6 a^2 d e (e \cot (c+d x))^{3/2}}-\frac {9}{2 a^2 d e^2 \sqrt {e \cot (c+d x)}}-\frac {1}{2 d e (e \cot (c+d x))^{3/2} \left (a^2+a^2 \cot (c+d x)\right )}-\frac {\operatorname {Subst}\left (\int \frac {x^2}{e^2+x^4} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{a^2 d e^2}\\ &=-\frac {7 \tan ^{-1}\left (\frac {\sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{2 a^2 d e^{5/2}}+\frac {7}{6 a^2 d e (e \cot (c+d x))^{3/2}}-\frac {9}{2 a^2 d e^2 \sqrt {e \cot (c+d x)}}-\frac {1}{2 d e (e \cot (c+d x))^{3/2} \left (a^2+a^2 \cot (c+d x)\right )}+\frac {\operatorname {Subst}\left (\int \frac {e-x^2}{e^2+x^4} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 a^2 d e^2}-\frac {\operatorname {Subst}\left (\int \frac {e+x^2}{e^2+x^4} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 a^2 d e^2}\\ &=-\frac {7 \tan ^{-1}\left (\frac {\sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{2 a^2 d e^{5/2}}+\frac {7}{6 a^2 d e (e \cot (c+d x))^{3/2}}-\frac {9}{2 a^2 d e^2 \sqrt {e \cot (c+d x)}}-\frac {1}{2 d e (e \cot (c+d x))^{3/2} \left (a^2+a^2 \cot (c+d x)\right )}-\frac {\operatorname {Subst}\left (\int \frac {\sqrt {2} \sqrt {e}+2 x}{-e-\sqrt {2} \sqrt {e} x-x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{4 \sqrt {2} a^2 d e^{5/2}}-\frac {\operatorname {Subst}\left (\int \frac {\sqrt {2} \sqrt {e}-2 x}{-e+\sqrt {2} \sqrt {e} x-x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{4 \sqrt {2} a^2 d e^{5/2}}-\frac {\operatorname {Subst}\left (\int \frac {1}{e-\sqrt {2} \sqrt {e} x+x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{4 a^2 d e^2}-\frac {\operatorname {Subst}\left (\int \frac {1}{e+\sqrt {2} \sqrt {e} x+x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{4 a^2 d e^2}\\ &=-\frac {7 \tan ^{-1}\left (\frac {\sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{2 a^2 d e^{5/2}}+\frac {7}{6 a^2 d e (e \cot (c+d x))^{3/2}}-\frac {9}{2 a^2 d e^2 \sqrt {e \cot (c+d x)}}-\frac {1}{2 d e (e \cot (c+d x))^{3/2} \left (a^2+a^2 \cot (c+d x)\right )}-\frac {\log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{4 \sqrt {2} a^2 d e^{5/2}}+\frac {\log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{4 \sqrt {2} a^2 d e^{5/2}}-\frac {\operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{2 \sqrt {2} a^2 d e^{5/2}}+\frac {\operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{2 \sqrt {2} a^2 d e^{5/2}}\\ &=-\frac {7 \tan ^{-1}\left (\frac {\sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{2 a^2 d e^{5/2}}+\frac {\tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{2 \sqrt {2} a^2 d e^{5/2}}-\frac {\tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{2 \sqrt {2} a^2 d e^{5/2}}+\frac {7}{6 a^2 d e (e \cot (c+d x))^{3/2}}-\frac {9}{2 a^2 d e^2 \sqrt {e \cot (c+d x)}}-\frac {1}{2 d e (e \cot (c+d x))^{3/2} \left (a^2+a^2 \cot (c+d x)\right )}-\frac {\log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{4 \sqrt {2} a^2 d e^{5/2}}+\frac {\log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{4 \sqrt {2} a^2 d e^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 6.34, size = 467, normalized size = 1.41 \[ \frac {\cot ^3(c+d x) \csc ^2(c+d x) (\sin (c+d x)+\cos (c+d x))^2 \left (-4 \tan (c+d x)+\frac {2}{3} \sec ^2(c+d x)-\frac {\sin (c+d x)}{2 (\sin (c+d x)+\cos (c+d x))}-\frac {2}{3}\right )}{d (a \cot (c+d x)+a)^2 (e \cot (c+d x))^{5/2}}+\frac {\cot ^{\frac {5}{2}}(c+d x) \csc ^2(c+d x) (\sin (c+d x)+\cos (c+d x))^2 \left (-\frac {16 (\cot (c+d x)+1) \csc ^3(c+d x) \sec (c+d x) \tan ^{-1}\left (\sqrt {\cot (c+d x)}\right )}{(\tan (c+d x)+1) \left (\cot ^2(c+d x)+1\right )^2}+\frac {\sin (2 (c+d x)) (\cot (c+d x)+1) \csc ^2(c+d x) \sec ^2(c+d x) \left (2 \tan ^{-1}\left (\sqrt {\cot (c+d x)}\right )-\sqrt {2} \left (\tan ^{-1}\left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )-\tan ^{-1}\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )\right )\right )}{2 (\tan (c+d x)+1) \left (\cot ^2(c+d x)+1\right )}+\frac {\cos (2 (c+d x)) \csc ^3(c+d x) \sec (c+d x) \left (\log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )-\log \left (-\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}-1\right )\right )}{\sqrt {2} (\tan (c+d x)+1) (\cot (c+d x)-1) \left (\cot ^2(c+d x)+1\right )}\right )}{4 d (a \cot (c+d x)+a)^2 (e \cot (c+d x))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((e*Cot[c + d*x])^(5/2)*(a + a*Cot[c + d*x])^2),x]

[Out]

(Cot[c + d*x]^3*Csc[c + d*x]^2*(Cos[c + d*x] + Sin[c + d*x])^2*(-2/3 + (2*Sec[c + d*x]^2)/3 - Sin[c + d*x]/(2*
(Cos[c + d*x] + Sin[c + d*x])) - 4*Tan[c + d*x]))/(d*(e*Cot[c + d*x])^(5/2)*(a + a*Cot[c + d*x])^2) + (Cot[c +
 d*x]^(5/2)*Csc[c + d*x]^2*(Cos[c + d*x] + Sin[c + d*x])^2*((-16*ArcTan[Sqrt[Cot[c + d*x]]]*(1 + Cot[c + d*x])
*Csc[c + d*x]^3*Sec[c + d*x])/((1 + Cot[c + d*x]^2)^2*(1 + Tan[c + d*x])) + (Cos[2*(c + d*x)]*Csc[c + d*x]^3*(
-Log[-1 + Sqrt[2]*Sqrt[Cot[c + d*x]] - Cot[c + d*x]] + Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])*Sec
[c + d*x])/(Sqrt[2]*(-1 + Cot[c + d*x])*(1 + Cot[c + d*x]^2)*(1 + Tan[c + d*x])) + ((-(Sqrt[2]*(-ArcTan[1 - Sq
rt[2]*Sqrt[Cot[c + d*x]]] + ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]])) + 2*ArcTan[Sqrt[Cot[c + d*x]]])*(1 + Cot[
c + d*x])*Csc[c + d*x]^2*Sec[c + d*x]^2*Sin[2*(c + d*x)])/(2*(1 + Cot[c + d*x]^2)*(1 + Tan[c + d*x]))))/(4*d*(
e*Cot[c + d*x])^(5/2)*(a + a*Cot[c + d*x])^2)

________________________________________________________________________________________

fricas [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cot(d*x+c))^(5/2)/(a+a*cot(d*x+c))^2,x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   catdef: division by zero

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (a \cot \left (d x + c\right ) + a\right )}^{2} \left (e \cot \left (d x + c\right )\right )^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cot(d*x+c))^(5/2)/(a+a*cot(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(1/((a*cot(d*x + c) + a)^2*(e*cot(d*x + c))^(5/2)), x)

________________________________________________________________________________________

maple [A]  time = 0.67, size = 276, normalized size = 0.83 \[ -\frac {\sqrt {e \cot \left (d x +c \right )}}{2 d \,a^{2} e^{2} \left (e \cot \left (d x +c \right )+e \right )}-\frac {7 \arctan \left (\frac {\sqrt {e \cot \left (d x +c \right )}}{\sqrt {e}}\right )}{2 a^{2} d \,e^{\frac {5}{2}}}-\frac {\sqrt {2}\, \ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )}{8 d \,a^{2} e^{2} \left (e^{2}\right )^{\frac {1}{4}}}-\frac {\sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )}{4 d \,a^{2} e^{2} \left (e^{2}\right )^{\frac {1}{4}}}+\frac {\sqrt {2}\, \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )}{4 d \,a^{2} e^{2} \left (e^{2}\right )^{\frac {1}{4}}}+\frac {2}{3 a^{2} d e \left (e \cot \left (d x +c \right )\right )^{\frac {3}{2}}}-\frac {4}{a^{2} d \,e^{2} \sqrt {e \cot \left (d x +c \right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*cot(d*x+c))^(5/2)/(a+cot(d*x+c)*a)^2,x)

[Out]

-1/2/d/a^2/e^2*(e*cot(d*x+c))^(1/2)/(e*cot(d*x+c)+e)-7/2*arctan((e*cot(d*x+c))^(1/2)/e^(1/2))/a^2/d/e^(5/2)-1/
8/d/a^2/e^2/(e^2)^(1/4)*2^(1/2)*ln((e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(
d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))-1/4/d/a^2/e^2/(e^2)^(1/4)*2^(1/2)*arctan(2^(1/2)
/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)+1/4/d/a^2/e^2/(e^2)^(1/4)*2^(1/2)*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+
c))^(1/2)+1)+2/3/a^2/d/e/(e*cot(d*x+c))^(3/2)-4/a^2/d/e^2/(e*cot(d*x+c))^(1/2)

________________________________________________________________________________________

maxima [A]  time = 1.01, size = 274, normalized size = 0.83 \[ \frac {e {\left (\frac {4 \, {\left (4 \, e^{2} - \frac {20 \, e^{2}}{\tan \left (d x + c\right )} - \frac {27 \, e^{2}}{\tan \left (d x + c\right )^{2}}\right )}}{a^{2} e^{4} \left (\frac {e}{\tan \left (d x + c\right )}\right )^{\frac {3}{2}} + a^{2} e^{3} \left (\frac {e}{\tan \left (d x + c\right )}\right )^{\frac {5}{2}}} - \frac {3 \, {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {e} + 2 \, \sqrt {\frac {e}{\tan \left (d x + c\right )}}\right )}}{2 \, \sqrt {e}}\right )}{\sqrt {e}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {e} - 2 \, \sqrt {\frac {e}{\tan \left (d x + c\right )}}\right )}}{2 \, \sqrt {e}}\right )}{\sqrt {e}} - \frac {\sqrt {2} \log \left (\sqrt {2} \sqrt {e} \sqrt {\frac {e}{\tan \left (d x + c\right )}} + e + \frac {e}{\tan \left (d x + c\right )}\right )}{\sqrt {e}} + \frac {\sqrt {2} \log \left (-\sqrt {2} \sqrt {e} \sqrt {\frac {e}{\tan \left (d x + c\right )}} + e + \frac {e}{\tan \left (d x + c\right )}\right )}{\sqrt {e}}\right )}}{a^{2} e^{3}} - \frac {84 \, \arctan \left (\frac {\sqrt {\frac {e}{\tan \left (d x + c\right )}}}{\sqrt {e}}\right )}{a^{2} e^{\frac {7}{2}}}\right )}}{24 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cot(d*x+c))^(5/2)/(a+a*cot(d*x+c))^2,x, algorithm="maxima")

[Out]

1/24*e*(4*(4*e^2 - 20*e^2/tan(d*x + c) - 27*e^2/tan(d*x + c)^2)/(a^2*e^4*(e/tan(d*x + c))^(3/2) + a^2*e^3*(e/t
an(d*x + c))^(5/2)) - 3*(2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*sqrt(e) + 2*sqrt(e/tan(d*x + c)))/sqrt(e))/sqrt
(e) + 2*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2)*sqrt(e) - 2*sqrt(e/tan(d*x + c)))/sqrt(e))/sqrt(e) - sqrt(2)*log(
sqrt(2)*sqrt(e)*sqrt(e/tan(d*x + c)) + e + e/tan(d*x + c))/sqrt(e) + sqrt(2)*log(-sqrt(2)*sqrt(e)*sqrt(e/tan(d
*x + c)) + e + e/tan(d*x + c))/sqrt(e))/(a^2*e^3) - 84*arctan(sqrt(e/tan(d*x + c))/sqrt(e))/(a^2*e^(7/2)))/d

________________________________________________________________________________________

mupad [B]  time = 1.23, size = 425, normalized size = 1.28 \[ -\frac {\mathrm {atan}\left (\frac {2048\,a^{10}\,d^5\,e^{18}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}\,{\left (-\frac {1}{a^8\,d^4\,e^{10}}\right )}^{1/4}}{2048\,a^8\,d^4\,e^{16}+100352\,a^{12}\,d^6\,e^{21}\,\sqrt {-\frac {1}{a^8\,d^4\,e^{10}}}}+\frac {100352\,a^{14}\,d^7\,e^{23}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}\,{\left (-\frac {1}{a^8\,d^4\,e^{10}}\right )}^{3/4}}{2048\,a^8\,d^4\,e^{16}+100352\,a^{12}\,d^6\,e^{21}\,\sqrt {-\frac {1}{a^8\,d^4\,e^{10}}}}\right )\,{\left (-\frac {1}{a^8\,d^4\,e^{10}}\right )}^{1/4}}{2}-\mathrm {atan}\left (\frac {a^{10}\,d^5\,e^{18}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}\,{\left (-\frac {1}{256\,a^8\,d^4\,e^{10}}\right )}^{1/4}\,8192{}\mathrm {i}}{2048\,a^8\,d^4\,e^{16}-1605632\,a^{12}\,d^6\,e^{21}\,\sqrt {-\frac {1}{256\,a^8\,d^4\,e^{10}}}}-\frac {a^{14}\,d^7\,e^{23}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}\,{\left (-\frac {1}{256\,a^8\,d^4\,e^{10}}\right )}^{3/4}\,6422528{}\mathrm {i}}{2048\,a^8\,d^4\,e^{16}-1605632\,a^{12}\,d^6\,e^{21}\,\sqrt {-\frac {1}{256\,a^8\,d^4\,e^{10}}}}\right )\,{\left (-\frac {1}{256\,a^8\,d^4\,e^{10}}\right )}^{1/4}\,2{}\mathrm {i}-\frac {\frac {9\,{\mathrm {cot}\left (c+d\,x\right )}^2}{2}+\frac {10\,\mathrm {cot}\left (c+d\,x\right )}{3}-\frac {2}{3}}{a^2\,d\,{\left (e\,\mathrm {cot}\left (c+d\,x\right )\right )}^{5/2}+a^2\,d\,e\,{\left (e\,\mathrm {cot}\left (c+d\,x\right )\right )}^{3/2}}-\frac {\mathrm {atan}\left (\frac {\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}\,\sqrt {-e^5}\,1{}\mathrm {i}}{e^3}\right )\,\sqrt {-e^5}\,7{}\mathrm {i}}{2\,a^2\,d\,e^5} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((e*cot(c + d*x))^(5/2)*(a + a*cot(c + d*x))^2),x)

[Out]

- (atan((2048*a^10*d^5*e^18*(e*cot(c + d*x))^(1/2)*(-1/(a^8*d^4*e^10))^(1/4))/(2048*a^8*d^4*e^16 + 100352*a^12
*d^6*e^21*(-1/(a^8*d^4*e^10))^(1/2)) + (100352*a^14*d^7*e^23*(e*cot(c + d*x))^(1/2)*(-1/(a^8*d^4*e^10))^(3/4))
/(2048*a^8*d^4*e^16 + 100352*a^12*d^6*e^21*(-1/(a^8*d^4*e^10))^(1/2)))*(-1/(a^8*d^4*e^10))^(1/4))/2 - atan((a^
10*d^5*e^18*(e*cot(c + d*x))^(1/2)*(-1/(256*a^8*d^4*e^10))^(1/4)*8192i)/(2048*a^8*d^4*e^16 - 1605632*a^12*d^6*
e^21*(-1/(256*a^8*d^4*e^10))^(1/2)) - (a^14*d^7*e^23*(e*cot(c + d*x))^(1/2)*(-1/(256*a^8*d^4*e^10))^(3/4)*6422
528i)/(2048*a^8*d^4*e^16 - 1605632*a^12*d^6*e^21*(-1/(256*a^8*d^4*e^10))^(1/2)))*(-1/(256*a^8*d^4*e^10))^(1/4)
*2i - ((10*cot(c + d*x))/3 + (9*cot(c + d*x)^2)/2 - 2/3)/(a^2*d*(e*cot(c + d*x))^(5/2) + a^2*d*e*(e*cot(c + d*
x))^(3/2)) - (atan(((e*cot(c + d*x))^(1/2)*(-e^5)^(1/2)*1i)/e^3)*(-e^5)^(1/2)*7i)/(2*a^2*d*e^5)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\int \frac {1}{\left (e \cot {\left (c + d x \right )}\right )^{\frac {5}{2}} \cot ^{2}{\left (c + d x \right )} + 2 \left (e \cot {\left (c + d x \right )}\right )^{\frac {5}{2}} \cot {\left (c + d x \right )} + \left (e \cot {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx}{a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cot(d*x+c))**(5/2)/(a+a*cot(d*x+c))**2,x)

[Out]

Integral(1/((e*cot(c + d*x))**(5/2)*cot(c + d*x)**2 + 2*(e*cot(c + d*x))**(5/2)*cot(c + d*x) + (e*cot(c + d*x)
)**(5/2)), x)/a**2

________________________________________________________________________________________